Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Anatomy & Cell Biology ; : 188-194, 2015.
Article in English | WPRIM | ID: wpr-81740

ABSTRACT

Molecular interactions between epithelium and mesenchyme are important for root formation. Nuclear factor I-C (Nfic) has been identified as a key regulator of root formation. However, the mechanisms of root formation and their interactions between Hertwig's epithelial root sheath (HERS) and mesenchyme remain unclear. In this study, we investigated the role of Nfic in root patterning and growth during molar root development. The molars of Nfic knockout mice exhibited an enlarged pulp chamber and apical displacement of the pulpal floor, characteristic features of taurodontism, due to delayed furcation formation. In developing molar roots of mutant mice at P14, BrdU positive cells decreased in the apical mesenchyme of the elongation region whereas those cells increased in the dental papilla of the furcation region. Whereas cytokeratin 14 and laminin were localized in HERS cells of mutant molars, Smoothened (Smo) and Gli1 were downregulated in preodontoblasts. In contrast, cytokeratin 14 and Smo were localized in the cells of the furcation region of mutant molars. These results indicate that Nfic regulates cell proliferation in the dental mesenchyme and affects the fate of HERS cells in a site-specific manner. From the results, it is suggested that Nfic is required for root patterning and growth during root morphogenesis.


Subject(s)
Animals , Mice , Bromodeoxyuridine , Cell Proliferation , Dental Papilla , Dental Pulp Cavity , Epithelium , Keratin-14 , Laminin , Mesoderm , Mice, Knockout , Molar , Morphogenesis , NFI Transcription Factors , Tooth Root , Tooth
2.
Anatomy & Cell Biology ; : 193-202, 2012.
Article in English | WPRIM | ID: wpr-125837

ABSTRACT

Wnt/beta-catenin signaling plays a critical role in bone formation and regeneration. Dentin and cementum share many similarities with bone in their biochemical compositions and biomechanical properties. Whether Wnt/beta-catenin signaling is involved in the dento-alveolar complex formation is unknown. To understand the roles of Wnt/beta-catenin signaling in the dento-alveolar complex formation, we generated conditional beta-catenin activation mice through intercross of Catnb+/lox(ex3) mice with Col1a1-cre mice. In mutant mice, tooth formation and eruption was disturbed. Lower incisors and molars did not erupt. Bone formation was increased in the mandible but tooth formation was severely disturbed. Hypomineralized dentin was deposited in the crown but roots of molars were extremely short and distorted. In the odontoblasts of mutant molars, expression of dentin matrix proteins was obviously downregulated following the activation of beta-catenin whereas that of mineralization inhibitor was increased. Cementum and periodontal ligament were hypoplastic but periodontal space was narrow due to increased alveolar bone formation. While cementum matrix proteins were decreased, bone matrix proteins were increased in the cementum and alveolar bone of mutant mice. These results indicate that local activation of beta-catenin in the osteoblasts and odontoblasts leads to aberrant dento-alveolar complex formation. Therefore, appropriate inhibition of Wnt/beta-catenin signaling is important for the dento-alveolar complex formation.


Subject(s)
Animals , Mice , beta Catenin , Bone Matrix , Crowns , Dental Cementum , Dentin , Incisor , Mandible , Molar , Odontoblasts , Osteoblasts , Osteogenesis , Periodontal Ligament , Proteins , Regeneration , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL